Course Syllabus

(NOTE: This is a preliminary draft of the course syllabus. The final version will be provided at the end of the first week of classes)

1. Course Information

AE/ME 7774		Fatigue of Materials and	Fall Term 2025
		Structures (~ 3hrs/week)	
Mondays/Tuesdays	:	To be Confirmed	
Wednesdays/ Thursdays	:	To be Confirmed	

2. Instructor & Grader Information

Instructor & Grader:	Dr. Louis SAT	YANARAYAN	Ph.D	
Email :	Louis.Satyanarayan@georgiatech-metz.fr			
Office Room Number:	226			
Office Hours (by appointment):	Tuesdays:	11:00AM	_	12:00PM
	Thursdays:	11:00 AM	_	12:00 PM

3. Syllabus/Topics covered

Objective To provide a working knowledge of state of the art methods and contemporary issues of fatigue life prediction and associated physical processes, with emphasis on metal fatigue.

Course Overview

No.	Chapter Name	Description
1	Physics of Fatigue Processes	 Crack nucleation Crack propagation metals, polymers, ceramics
2	Stress & Strain Response of Metals	 Monotonic tensile tests Temperature and rate dependence Cyclic response hardening, softening cyclic stress-strain curve with / without residual stresses.
3	Strain Life Relationships:	Stress-life and Basquin's Law

	LCF, HCF	 Coffin-Manson Law Cyclic property estimates Combined strain-life curve
		Quiz 1
4	Influence of Mean Stress, Surface Finish, Hardness	 Role of mean stresses on small crack nucleation/growth Models for mean stress effects Load sequence effects on mean stress Effects of surface finish and hardness on fatigue
5	Fatigue at Notches	 Theoretical stress concentration, size effects and Kf Neuber's rule and notch root stress-strain analysis Load sequence effects on notch root behavior
6	Variable Loading	 Cycle counting techniques and history reconstruction Damage summation - linear and nonlinear approaches Component calibration curves Applications to loading spectra
		Quiz 2
7	Scatter in Fatigue	 Probability distributions for scatter of fatigue strength fatigue life (S-N curves) Size effects and weak link theory Scatter in HCF versus LCF
8	LEFM Concepts and growth laws for physically long cracks	 Stress intensity factor and DK Cyclic crack tip fields Paris growth law Threshold and fracture regimes Crack closure and DKeff
9	Growth of small/short cracks	 Characteristics of microstructurally small crack growth Mechanics considerations/ Residual strength analyses. Kitagawa diagram and HCF thresholds Small cracks growing from notches Transition to long crack behavior
		Quiz 3
10	Multiaxial fatigue	 Historical overview of multiaxial HCF and LCF crack initiation Critical plane observations for small fatigue cracks Gamma plane representation
		Final Exam